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ABSTRACT

The Zero Annihilation Periodic (ZAP) controller is applied to the problem of vibration
control of a noncolocated flexible structure. 1 t is shown that even though the transfer
function is nonminimum-phase, a plant inverse controller can be designed which elicits
a deadbeat closed-loop response. The transfer function under investigation arises from
a noncolocated actuator/sensor configuration used on the ASTREX flexible structure at
USAF/Phillips Laboratory. Several simulation examples are given to demonstrate the
ZAP control method. As expected from the theory, the closed-loop response is deadbeat,
and the vibrations are damped instantaneously.

1. INTROIIUC'I'1ION

The Zero Annihilation Periodic (ZAP) control law was introduced in Bayard [3] [4] [5] for
controlling nonminimum phase systems using stable plant inversion. The general approach
is based On the notion of a mathematical ‘(lifting“ in which a serial-to-parallel conversion
is performed on the plant input and output signals, and mappings arc considered bet ween
the vectorized quantities. Bayard’s lifting [5] is a generalization of Lozano’s lifting [10] to
the extended horizon case. The generalization to the extended horizon case is crucial for
control gain reduction in order to allow practical iinplementations of the approach.

A key property of the above liftings which makes thcm so useful is that the transmission
zeros of the lifted plant arc annihilated (i.e., placed to the origin). This zero- annihilation
(2A) property allows the lifted plant to be stably inverted using standard control methods.
This result is important to many areas of control, communications, and signal processing
where a stable plant inverse is often desired but not possible due to nonminimum- phase
restrictions.

In the present paper, the extended horizon ZAP controller is applied to the problem of
vibration control of a nonminimum-phase transfer function. The transfer function arises
from a noncolocated actuator/sensor configuration used on the ASTREX facility at the
USAF/Phillips Laboratory, Edwards Air Force Base [1 1]. Several simulation examples
arc given to demonstrate the ZAP control method. As expected from the theory, the
closed-loop response is deadbeat,and the vibrations arc damped instantaneously.



2. BACKGROUND ANI) NOTATION

Consider the input/output model,

A(z" Yyye = B(z™ Yue (2.1a)
Az = 14 }:agz"'i; B(z71) = Zbiz"i (2.1b)
1=r1 =1

where polynomials A and B arc assumed to be relatively prime. It is assumed that b1+ 0,
so that the polynomial B can be factored uniquely into the form B(z7!) = 2744, B(z 1)
where B(z7 ') is monic and d == 1 is the plant delay. It is desired to transform (2.1) into
the Block Multirate Input/Output form of Albertos [I], for which it will be necessary to
make the following assumptions,

A.1 The plant delay is known (and given by d == 1)
A.2 An upper bound 7 >n is known on the plant order n

The choice d =1 in assumption A.1 is for convenience only and is not a fundamental
restriction. In the case that d # 1, knowledge of d ensures that all subscquent expressions
can be appropriately modified without loss of generality.

Choose some horizon time N > 7. The system (2.1) is iterated to give the following system
of linear equations,

Y(K) = A1 Y (k) + A Y (k — 1)+ 1l UK) + BU(k - 1) (2.2)
where,
YEN41 UEN
YkN+42 UEN41
Yk = |5 Uk = . (2.3)
YN+ N UEN4 N--1
Aj = lower triangular Toeplitz, with first column [0, —@1,....-~a,,0,.... O]T
A,= upper triangular Tocplitz, with first row [0, . ...0, —a,,. ... —a]

B = lower triangular- Toeplitz, with first coluinn [b;, by, ... b,,0,. ..O]T

By = upper triangular Tocplitz, with first row [0, . ...0, b, . . . b2]

It is convenient to combine terms involving Y(k) in (2.2) and rearrange to give the following
input/output characterization,

Block Multirate Input/Output (BMIQ) Representation

Y(k) =AY (k - 1) + HU(k) + BU(k - 1) (2.4)
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where,

‘»1 = ([ - Al)_ “1:12 25&)
H o= (T A "By (2.5b)
B= (I- A) B, (2.5¢)

Several advantages anti properties of the BMIO representation are discussed in Albertos
(1]. It is noted that since A, is lower triangular with zeros onthe diagonal, the quantity
(I - Ay)is always invertible. Hence the quantities in (2.5) always exist,and the BMIO
model (2.4) is a first order vector ARX process which is equivalent to the original systemn
(2.1). It is emphasized that only assumptions A. 1 and A.2 were required to put the plant
into the desired BMIO form.

Polynomial A is divided into B to give impulse response sequence {#:},

B(z~') o i
A1) ?:h,z (2.6)

The quantities hi are referred to as Markov parameters. The impulse response sequence
{hi}is not assumed to be convergent (i.e., the system may be unstable). Using the
Toeplitz structure of 4; and B, and relation (2.6), it can be shown [1] [3] that the matrix
Hin (2.4) (2.5b) can be written in terms of the Markov parameters as,

hy 0 --- O

H = hf I (2.7)
. ‘. ‘. 0
hny o ho By

This is the desired expression for H, i.e.,
H = lower triangular Toecplitz, with first column/[hy, h,, .. .. AN

Since the delay is unity by assumption (i.e., d = 1), the matrix H has a nonzero diagonal
(i.e., hys# O), and is always invertible.

3. GENERALIZED LIFTINGS

In this section, a class of generalized liftings wil. be defined from the BM1O plant repre-
sentation (2.4).

Some new notation is required at this point. In general, consider some vector V €RN.
Then a partial horizon vector V, = SV is defined where S € R7*¥ is a selection matrix
which selects o < N components of V for inclusion in V, € R°. For this purpose, S will
be a matrix of O's and 1's with a a single “I” in every row, and a single “I” in only ¢ of
its N columns.

As indicated by the expression V,== SV, the subscript ‘(s” will be used throughout to
denote quantities which are constructed from “selected” elements of their unsubscripted
counterparts.



The selection matrix S defined above can also be thought of as being specified uniquely
by a (), 1 windowvector p=|py,.... P~} whose ent riesare,
e { 1 if zthentry of V' is included in Vj
0 otherwise

The number of “1 'S” in p is defined as 0. Note that if the clements of p were to be plotted
versus their index,a O, 1 “window” is formed over the N-step horizon, depicting which o
components of V arc to be included inV,. The construction of S from pin this manner
dcfines a one-to-one mapping S = W(p) which will be convenient notation in the paper.

As an example, consider the plot showninFig. 1 for an input window p, and an output
window p,. The construction of selection matrices Sy, and Sy corresponding to the windows
puand pyin Fig. 1, is shown in the example below.

Example 1  Consider the case in Fig. 1 where N == 6,and py = [0,0,1,1,1,0], pu=
(0,1,1, 1,0,0]. Then, cr,== 0, = 3, py= [1,1, 0,0,0, 1] (the complementary window to py)
and,

01 00O0O0O

Su = W(py) = 0010000
| 00010 0 O

[ 001 00 0 O]

Sy= W(py) = 0001000
| 0000 10 O]

[ 1. 00 0000
Sy=W(pS) = 01 00O0O0O
| 000 O0O0O0 1

Note that in the example, we have included the selection matrix Sy associated with the
window pg which is defined as the O-1 complement of window p,. This complementary
window will play an important role in the following discussion.

Using the above notation, the following partial horizon vectors will be used in the paper,
Yo(k) £ S,Y (k) Sy & W(py) € RO*V
Ul(k) & SLUK); Su & W(pu) € Ro=*N
Ye(k) £S5 Y (k) S5 & W(pS) € RIV=an)xN
where p, and p, arc specified O, 1 window vectors, and py is defined as the O, 1 complement

of py. Intuitively, Y ¢ is a vector comprised of all elements of the vector Y which are not
included in Y.

A general class liftings is now defined from the BMIO plant representation (2.4) by making
the input nonzero only over a restricted portion of each horizon, and by measuring the
output only over a restricted portion of each horizon. Specifically, the partial horizon input
and outputs defined above are used in the BMIO model (2.4) to give,

e R AR R A C
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v - (s, 0] 0] (3.2)

It, is shownin [5] that the lifted plant (3.1 )(3.2) can be transformed by similarity to the
following more uscful form,

Generalized Iifting System Model 1
u
Y, (k) SyAS;{' SyA(Sy " S,BST 1k
Yo(k) | = | SSAST ScA(SHT sepsT YE(k- 1)
Us(k) 0 0 0 H Ulhg 1)
JHST
+ QSHST Ug(k) (3.3)

|
The lifted system model (3.3) is depicted in the block diagram of Fig. 2. It is seen that Y,
and Y7 form two coupled subsystems which arc driven by a common input Us,. It is also
noted that the transmission zeros of the transfer function from U,(k) to Y,(k) arc affected
by the choice of windows p. and py. This is a kcy feature of the lifted systtm model which
will be used to advantage in later developments.

It is noted that the liftings are defined uniquely by the choice of selection windows p, and
py- An important class of liftings will be defined in the next section.

4. EXTENDED 11ORIZON LIFTINGS
Consider the class of liftings defined by Bayard in [5],
Extended Horizon Liftings

m 14 n n
pu=,..,01,..,1,1,..,1,0,...,0] (4.1a)
m 14 n n
py=0[0,..00....00 ... 0,1, ...,1] (4.18)

where £> O, m >0, and n > 01s the order of the irreducible plant (2.1). Note that the
total horizon length is given by N =m + £+ 2n. This is denoted as an extended horizon
lifting because N is greater than 2n where n is the order of the plant.

Remark 1 The Lozano lifting [10] corresponds to a lifting where the horizon length N
is exactly 2n, and the lifted plant is square (i. e., o, = cr,). In comparison, the Extended
Horizon liftings allow N >271 where the extra degrees of freedom will be used to advantage.

Remark 2 It is noted that if one chooses m > 0 in (4.1), the first control action is not
applied until m + 1 sample times into the window. Hence, the extra 7n *7'seconds of free
time can be used to perform computations (where T is the sampling interval). Since m
can be chosen arbitrarily in this lifting, the dead time can be matched to the real-time
computer requirements.




Remark 3 If oue chooses € > () in (4.1 ), there are more control inputs than outputs in
the lifted system (i. e., o, > 0,). It will be scen that these extra degrees of freedom in
the input can be used to advantage to mninimize a quadratic control cost and hence reduce
control gains significantly compared with the case € = O.

It has been shown in Bayard[5] that the following conditions are satisfied by the extended
horizon lifting (4.1),

Output Tracking (O 7') Condition

H,H! =1 (4.2)
Zero Annihilation (2A) Conditions .

Bst o (4.3a)

A(SHT =0 (4.31))

Substituting the ZA conditions (4.3) into (3.3) gives the simnplified system model,
Extended Horizon Lifting System Model

Yo(k) = SyASTY(k - 1) - H,U(k) (44 CL)
YE(k)=SSASTY (k- 1) 4 Sg HSIU,(k) (4.4b)

where “selected” matrix H, is defined as,
H,= S,HSY (4.5)

Equivalently, under the ZA conditions the system shown in Fig. 2 simplifies to the system
shown in Fig. 3. All of the key properties of the extended horizon lifting (4.1) can be
understood by comparing Fig. 2 and Fig,. 3, It is noted that Y,f no longer couples into the
Y, subsystem. Furthermore, the YS subsystem has becomne deadbeat i.e., all of the poles
of the Y subsystem are at the origin. Most importantly, (assuming H, is square), the
transmission zeros of the transfer function from U,(k) to Y.(k) have been annihilated (i. e.,
placed at the origin). If H, is not square, the transmission zeros of the “squared down”

transfer function from V (where U, = H;‘ V) to Y, are annihilated.

5. ZERO ANNIHILATION PERIODIC (ZAP) CONTROI.

The placement of the transmission zeros to the origin by the extended horizon lifting (4 .1)
allows stable invertibility of the transfer function from U, (k) to Y,(k). The ZAP control
law which will be discussed next decadbeats the response Y,(k) to follow the desired Yy(k),
subject to the minimization of a quadratic control cost.

To derive the ZAP controller, define the output error as,
E(k) =Ya(k) - SyY (k) (1.1)
Substituting (2.4) into (4.1), and using (3.2) and (3.12) gives,
E(k) = - S,AY (k - 1) - HU,(k)Ya(k) (5.2)
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= =Sy ASTY (k- 1) - HLU (k) 4 Ya(k) (5.3)

Consider the problem of forcing the error in (5.3) to zero in a single step, while minimizing
a quadratic control cost penalty, i.e. ,

. TN (1.
(1/13(111) U, (k)Us (k) (5.4a)

subject to
E(k)= 0 (5.4b)

in light of the OT condition (4.2), this minimization problem canbe solved uniquely to
give the ZAP control,

Zero Annihilation Periodic (ZA P) Control Law

US(k) = II}(-‘SyASg'Y,(k — 1)+ Yd(k)) (5.5)
= IK°Y,(k - 1) 4 L°Ya(k) (5.6)
where the corresponding feedback gains arc defined as,
K°=-. H!S,AS] (5.7a)
L =Hm} (5.7b)

Here the superscript “0” ‘is chosen to emphasize the fact that the control nulls (i. e., dead-
beats) the output, and superscript “t” denotes the Moore- Penrose pseudo-inverse (cf.,
13arnett [2]). n

For convenience the ZAP control law is summarized in the block diagram of Fig. 4. It is
shown in Bayard [5] that the ZAP controller enjoys the following properties,

1. The quadratic control cost (5.4a) is minimized at each stage, subject to the deadbeat
tracking constraint (5.4 b),

2. All closed-loop poles are at the origin (i.e., the closed-loop response is deadbeat), and
hence Y,(k) converges to Yg(k) in a single step,

3. The closed-loop system is internally stable (e.g., Y (k) remains bounded),

Remark 4 As mentioned earlier, the Lozano lifting corresponds to a case where N =
2n, o, =N, sigmay = N. However, in this case the lifted plant is square, and there are no
surplus inputs to minimize the quadratic cost (5.4a) while satisfying the deadbeat condi-
tion (5.4 b). Hence, the control gains and input control torques associated with Lozano's
approach tend to be significantly larger compared to the extended horizon case. For ex-
ample, in the simulation study to follow, it will be seen that a square lifting leads to peak
torques 4 ordersof magnitude larger than the corresponding extended horizon lifting.




6.ASTREX I“AC11,I'1'%

The algorithm is now evaluated by simulation using the dynamic 1110(1 (1 of the testhed
at the U S AR /Phillips Laboratory’s Advanced Space structures Technology Rescarch
FXperiments (ASTREX) facility. The performance assessment scenario concentrates on
vi brawion suppression of the secondary mirror using the piczoclectric sensing/actuation
cimmbeddedinthe “smart strut” tripod, where it hasbcer found that all transfer functions
exhibit nonminimum phase characteristics. A brief description of the structure is given in
the following.

The ASTREX facility is located at the U.S. Air Force Phillips laboratory, Edwards AFB,
California, and is a testbed intended for experiments to validate methodologies and algo-
rithms large angle slewing, and vibration control of flexible space platforms [1 I]. It is an
antenna-like structure (Figure 5)and consists of a pivoting test article that is mounted
on an air-bearing vertical pedestal. The test article is divided into threc main sections.
The largest Section is the primary. Six triangular plates are mounted on the primary truss
to generate moment of inertia equivalent to that of a 5-meter reflector. In addition, two
cylindrical masses have been attached to opposite ends of the primary to represent the in-
ertia of two tracking telescopes. ‘I'he rear section, the tertiary, is used to house the system
electronics as well as to balance the structure. Finally, the front section, the secondary, is
connected to the primary through a tripod support structure. The secondary consists of
three small plates that are fitted in a triangular shape. A reaction wheel is located within
the triangular plate structure, while, many types of sensors can be mounted externally.

A high fidelity finite element model ha.. been generated by the Phillips Laboratory that
consists of nearly 550 nodes and 1000 elements. Based on this model, a state space repre-
sentations of the system can be derived for usc in design and simulation work.

Of interest in the present paper is the active strut tripod supporting the sccondary. The
piezoclectric actuators and sensors in the tripod are to be used with the control algorithm
to effect vibration suppression. A six mode two-input two-output continuous-time state
space representation {A, B,C, D} has been gencrated from the original finite elernent model
that results in the frequency domain input-ouput relation

y(s) = [C(s[ — A)'B + D] u(s) (6.1)

where y,u € R? and the matrices A, B,C and D arc of appropriate dimensions. All four
transfer functions in (6.1) arc nonminimum phase as is evident from the pole-zero locations
in Figures 6-9.

Since the controller is in discrete-time, the plant is digitized with a sampling interval of
7" =25msec. The resulting discrete state space representation {®,G, C', D} leading to the
transfer matrix relation

y(z) = [C(2] - @)1 G 4 D) u(z) (6.2)

with dimensions corresponding to those in(6.1). Furthermore, G, C and D arc partitioned
as

C}] D= [(ll] dlg]

cl T ldar da2
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For the SISO simulations of the following section, the (1-1) channel is chosen, represented
by the transfer function

=0 ez - @) gy 4 dyy (6.3)

which also possesses nonminimmuin phase characteristics, since tiler'c arc open loop zeros
outside the unit circle (Figure 1 O). For the purposcs of this paper, a further simplification
of the model is made by setting d = O. This is done because our existing software was
developed for systems with unit delay. The algorithin, however, is valid for any delay, and
the software will beupgraded in the near future. As seenfrom the pole-zero locations in
Figure 11, this represents no serious loss of generality since the system with d == 0 retains
the nonminimum phase characteristics.

The mput and ouput of the plant arc measured in terms of the voltage in the PZT strut,
and must remain within the range of ::10Volts.

7. SIMULATION RESUTLS

The objective of this evaluation is to demonstrate the capability of the ZAP control algo-
rithm to effect stable plant inversion on an existing physical system (the ASTREX testbed)
and, perhaps the most important contribution of this algoritm, the extended horizon lift-
ing, that allows for adjustment of the required control effort levels by varying the partial
horizon length 2.

The open-loop output time response of the system to a nonzero initial condition is shown in
Figure 12. The closed loop simulations are run for three different partial horizon lengths
¢= 0, 16,40. The special case of the ZAP control law for £= O (i.e., a square lifting)
results in the closed loop ouput time response of Figure 13. This case corresponds to
N == 2n,0,=n, o, Which is a squarelifting analogous to that of Lozano [1 O]. Although
the system exhibits deadbeat response, the applied control force induces an extremely large
(order 10%) transient amplitude. Figure 14 shows the corresponding control input plot. In
this case, both input ancl output exceed the PZT strut tolerance of 10V olts.

When the horizon length is increased to 16 samples, the required control force is drastically
reduced (Figure 15). The ouput, however, still reaches relatively high amplitude during the
1.6 sec that the input is applied (Figure 16). Further increase in the horizon length £ == 40,
results in the time response shown in Figures 17-18. The 12 system states (Figures 19-21)
exhibit similar deadbeat behavior implying that internal stability is also maintained.

8 CONCLUSIONS

The Zero Annihilation Periodic (ZAP) controller has been applied to the problem of vi-
bration control on the A STREX structure model. The ZAP controller is a plant inverse
control law which elicits a deadbeat closed-loop response, even though the sclected transfer
function was xiollnlil~ixzlur[]-phase (i.e., had zeros outside the unit circle). Several simula-
tion runs were performed,and as expected from the theory, the closed-loop response was
deadbeat, and the vibrations were damnped instantaneously.
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From the results of this is study, it, appears that the periodic control approach can be

made feasible for vibration damping problems. A ccordingly, it, is expected that the ZAD
controller willbe applicable to many other problem s it acou stics, noi se reduction, flexible
structurescontrol, vi bration suppression, vibration isolation, fast, slewing, etc., whereit is
usefulto dampen vibrations instantancouslyina d cadbeat ma n n er. The ZAP controller
can also be applied to tracki ngproblems whichwillbe reported elsew here. Future rescarch
is alined at multivariable and adaptive formulations of periodic control approaches.
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Figure 15: Closed loop output response for £ =16
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Figure 16: control input for £:=16
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Figure 17: Closed loop output response for € == 40
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Figure 18: Control Input for £ == 40
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Figure 19: System states z;-z4 for £ = 40

x10°

R TR
x 107
6, ¢ —-— —~— ———
4
2
-2
-4
. e JO P X
% H 10 ° 15
Time (xc)

Figure 20: System
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states ¥s-rsg for £ = 40
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Figure 19: System states zg-z;2 for £= 40
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